Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces

We give a survey of some recent results concerning the description of the rearrangement invariant envelopes of the generalized Besov, Sobolev, and Calderon spaces. We describe the smallest rearrangement invariant spaces in which these spaces are embedded. These results are based on equivalent descriptions of the cones of decreasing rearrangements for functions in Besov, Sobolev or Calderon spaces.

Авторы
Издательство
AMER MATHEMATICAL SOC
Язык
English
Страницы
53-81
Статус
Published
Том
424
Год
2007
Организации
  • 1 Peoples Friendship University of Russia
Цитировать
Поделиться

Другие записи