Метод коллокации Чебышева для решения ОДУ второго порядка с использованием матриц интегрирования

Chebyshev collocation method for solving second order ODEs using integration matrices

The spectral collocation method for solving two-point boundary value problems for second order differential equations is implemented, based on representing the solution as an expansion in Chebyshev polynomials. The approach allows a stable calculation of both the spectral representation of the solution and its pointwise\r\nrepresentation on any required grid in the definition domain of the equation and additional conditions of the multipoint problem. For the effective construction of\r\nSLAE, the solution of which gives the desired coefficients, the Chebyshev matrices of spectral integration are actively used. The proposed algorithms have a high accuracy for moderate-dimension systems of linear algebraic equations. The matrix of the system remains well-conditioned and, with an increase in the number of collocation points, allows finding solutions with ever-increasing accuracy.

Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
2
Язык
English
Страницы
150-163
Статус
Published
Том
31
Год
2023
Организации
  • 1 Peoples’ Friendship University of Russia
  • 2 Joint Institute for Nuclear Research
Ключевые слова
ordinary differential equation; spectral methods; two-point boundary value problems; обыкновенное дифференциальное уравнение; спектральные методы; двухточечные краевые задачи
Цитировать
Поделиться

Другие записи