
A radical hydrohaloalkylation of the ligand sphere of a chiral 
dehydroalanine Ni(II) complex: An asymmetric route to halogenated 
α-amino acid derivatives

Nadezhda V. Stoletova a, Alexander F. Smol’yakov a , Andrey A. Tyutyunov a ,  
Victor I. Maleev a , Vladimir A. Larionov a,b,*

a A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, bld. 1, 119334, Moscow, Russian Federation
b Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198, Moscow, Russian Federation

A R T I C L E  I N F O

Keywords:
Amino acids
Asymmetric synthesis
Halocarbons
Radical addition
Post-modification
Chiral nickel(II) complex

A B S T R A C T

An asymmetric synthetic protocol for the access to chiral artificial halogenated α-amino acid (α-AA) derivatives 
was elaborated through the radical functionalization of a double bond in the ligand sphere of a robust chiral 
dehydroalanine Belokon’s Ni(II) complex by hydrohaloalkylation reaction. A 4-cyano-pyrydine/B2Pin2 system 
promoted the in situ generation of radicals from halocarbons (including the hetero halogen atoms) for the sub
sequent coupling with the Ni(II) complex, providing the desired complexes with the yields in the range of 
40–65%. The further post-modification of the side AA chain allowed to obtain the complexes with cyclopropane 
ring and to substitute the bromine atom on hydrogen one as well. Exemplary, two enantiopure α-AAs, including 
(S)-2-amino-4,4,4-trichlorobutanoic acid, were isolated by an acidic decomposition of the single diastereomeric 
Ni(II) complexes along with the recovery of the chiral auxiliary.

1. Introduction

The halogen atom containing α-amino acids (α-AAs) are widely 
applied in biochemistry and in drug design due to their unique prop
erties [1–5]. The introduction of halogen atoms into the molecules can 
affect on their electronic, physicochemical, steric properties, and, 
moreover, such compounds can be as bioisosteres [6,7]. For example, 
halogenated compounds have a wide range of biological activities; some 
natural and synthetic products based on halogenated AAs (in most cases 
contain fluorine or chlorine atoms) [8–14], such as sintokamide A [8], 
dysamide A [9], odanacatib [10], (− )-herbacic acid [11], agonist of 
mGluR4 [12] and norcoronamic acid analogues [13], are shown in 
Fig. 1. Voxilaprevir®, which contains the synthetic (1S,2S)-1-ami
no-2-(difluoromethyl)-cyclopropane carboxylic acid, has been approved 
by FDA as a drug for the treatment of hepatitis C virus (HCV) [14]. The 
increasing demand for halogenated α-AAs is driving the development of 
new simple and efficient methods for their production [15–18].

The introduction of halocarbon groups into olefins is a prospective 

and straightforward approach to effectively increase molecular 
complexity [19–22]. One of the most well-known and forceful methods 
is Kharasch addition, also known as atom transfer radical addition 
(ATRA) [23,24]. A variety of efficient catalytic systems have been 
developed for this reaction. Most of them are based on metal complexes 
[25–32]; however, the obstacle in this case is the competitive 
atom-transfer polymerization process [33]. The use of metal-free or 
organic catalytic systems, mainly operating under (photo)redox condi
tions, has been a promising alternative to the exchange of metal catalysts 
in the functionalization of alkenes or double bonds with halocarbon 
groups [34–45]. This approach allows for the production of a diverse 
range of valuable hydrohaloalkylation products in the presence of 
hydrogen atom donors, however, in most cases, the alkylating agents are 
limited to chloroform and tetrachloromethane [34–45]. To date, the 
persistent pyridine-boryl radical system [46–48] has become widely 
used as an initiator in radical reactions due to its mild reaction condi
tions, functional group tolerance and broad substrate scope [49–59]. 
Meanwhile, the asymmetric variants of the hydrohaloalkylation process 
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for alkenes are still limited and underexplored [60–62] due to the high 
reactivity of radical intermediates, which presents a significant chal
lenge [63–65].

Given the interest in halogenated AAs [1–5], it is valuable to develop 
an asymmetric route to them for both practical and fundamental rea
sons. For example, the trihalomethyl group has the potential to serve as 
a metabolically stable substitute for –CH3 group. With a long-standing 
research interest in the asymmetric synthesis of AAs using reliable and 
versatile metal-templated approach [66–73], especially through radical 
chemistry [74–77], we report here an asymmetric route to challenging 
halogenated α-AAs via pyridine-boryl radical mediated functionaliza
tion of the ligand sphere of a robust chiral Belokon’s dehydroalanine Ni 
(II) complex 1 [78] (Scheme 1). In contrast to our previous report [77], 
we have expanded the range of alkylating agents to include more 
challenging polyhalogenated alkyl bromides (containing hetero halogen 
atoms) and have demonstrated the further modification of the resulting 
complexes in order to increase their molecular complexity. In particular, 
the introduction of a bromo-containing fragment allowed the 
post-modification procedures such as formation of a cyclopropane ring 
and protodebromination process.

2. Results and discussion

We commenced our study by the reaction of a chiral dehydroalanine 
Ni(II) complex 1 with bromotrichloromethane (CCl3Br) 2a (Table 1). 
The radical coupling reaction carried out in the presence of a 4-cyano- 
pyrydine/B2Pin2 system as an initiator and N,N-diisopropylethylamine 
(DIPEA) in 1,4-dioxane at room temperature, resulted in the formation 
of diastereomeric complex 3a in a ratio of 16:1 dr ((S,S)- and (S,R)- 
products) with 49% combined yield (Table 1, entry 1). The reactions 
performed in other solvents, such as MTBE, hexafluoroisopropanol 
(HFIP) and THF demonstrated very low efficiency (Table 1, entries 2–4). 
The reaction carried out in toluene afforded the Ni(II) complex 3a in an 
acceptable yield of 30%, although diastereoselectivity was low (dr 7.9:1) 
(Table 1, entry 5). The most effective solvent was found to be EtOAc, 
providing the product 3a in 49% yield and >20:1 dr (Table 1, entry 6). 
The change in reaction temperature did not improve yield (Table 1, 
entries 7,8). Next, other additives were investigated as proton sources 

(Table 1, entries 9–12). The highest yield (51%) was obtained when 10 
equivalents of HFIP were added to the reaction (Table 1, entry 12). The 
addition of 4 equivalents of 2a in two portions slightly improved the 
yield of complex 3a to 59% (Table 1, entry 13). The experiment using 
both DIPEA and HFIP produced 3a with a similar yield of 60% (Table 1, 
entry 14). The structure and absolute configuration of the complex 3a 
was determined unambiguously by single crystal XRD analysis (see 
Table 1).

In order to demonstrate the general applicability of this method, we 
then investigated the substrate scope of various halocarbons 2 under the 
conditions described in Entry 12 (Table 1) due to the differences in 
reactivity observed for other halocarbons (Scheme 2). The coupling of 
the complex 1 with carbon tetrabromide 2b (CBr4) afforded the product 
3b in a moderate yield (40%). Mixed fluorobromocarbons 2c–2f were 
also suitable for the reaction, yielding the desired products 3c–3f in 
acceptable yields (41–47%). Interestingly, in the use of 2f, in addition to 
the main product (S,S)-3f, side products were formed that contained a 
hydrogen atom and a hydroxyl group in place of a bromine atom (see the 
SI for details). The Ni(II) complex 3g featuring a heptafluoroleucine 
appendage was obtained using alkylating agent – iodofluorocarbon 2g 
and DIPEA as an additive in 65% yield. The reaction of 1,2-dibromo- 
1,1,2,2-tetrafluoroethane 2h with the complex 1 gave the complex 3h 
with one remaining bromine atom in 41% yield. Only single di
astereoisomers were found in all reactions (dr >20:1).

To further emphasize the scalability of our developed protocol, we 
conducted gram-scale reactions using halocarbons 2a and 2h. The single 
(S,S)-diastereomers of compounds 3a and 3h were isolated by standard 
silica chromatography in 46% (0.56 g) and 40% (0.54 g) yield, 
respectively.

It is known that the cyclopropyl-containing compounds are impor
tant in medicinal chemistry and drug design (see also Fig. 1) [79]. 
Therefore, we believed that the transformation of the linear halocarbon 
chain into a cyclopropyl ring in the complexes 3 would be a worthwhile 
aspiration (Scheme 3) [80,81]. Indeed, the intramolecular cyclization 
reaction of complex 3a in the presence of 1,8-diazabicyclo(5.4.0)unde
c-7-ene (DBU) as a base produced the desired complex 4a containing a 
cyclopropyl group with geminal chlorine atoms in 82% yield. Although 
the cyclopropanation reaction occurs under basic conditions, which may 

Fig. 1. Representative examples of bioactive compounds featuring halogenated amino acid motifs.
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cause the racemization of the stereocenter at the α-carbon atom of the 
AA residue during the cyclization step, the face-selectivity enforced by 
the chiral auxiliary through the π-Ni(II) interaction of the Bn group 

[82–84] ensures the formation of only one diastereomer. In a similar 
manner, the complex 3b was converted into product 4b with geminal 
bromine atoms in 87% yield. In the case of the transformation of 

Scheme 1. Synthetic protocols for access to enantiomerically pure halogen atom containing α-amino acids.

Table 1 
Reaction condition screening for the radical coupling of a chiral Ni(II) complex 1 with CCl3Br 2a.a.

Entry Solvent Additive (x equiv.) T (oC) Conv.b drc Yield of 3a (%)d

1 1,4-dioxane DIPEA (1.0) RT full 16:1 49
2 MTBE DIPEA (1.0) RT partial ND traces
3e HFIP DIPEA (1.0) RT partial ND traces
4 THF DIPEA (1.0) RT full >20:1 16
5 toluene DIPEA (1.0) RT full 7.9:1 30
6 EtOAc DIPEA (1.0) RT full >20:1 49
7 EtOAc DIPEA (1.0) 80 full >20:1 32
8 EtOAc DIPEA (1.0) 0 full >20:1 37
9 EtOAc EtOH (10.0) RT full >20:1 44
10 EtOAc MeOH (10.0) RT full >20:1 42
11 EtOAc H2O (10.0) RT full >20:1 43
12 EtOAc HFIP (10.0) RT full >20:1 51
13f EtOAc HFIP (10.0) RT full >20:1 59
14 EtOAc HFIP (10.0) + DIPEA (1.0) RT full >20:1 60

a Reaction conditions: Ni(II) complex (S)-1 (51 mg, 0.1 mmol), CCl3Br 2a (0.2 mmol, 2 equiv.), 4-cyanopyridine (0.3 mmol, 3.0 equiv.), B2Pin2 (0.3 mmol, 3.0 
equiv.), additive (1.0 or 10.0 equiv.) and solvent (1.0 mL) were stirred in a sealed Schlenk tube at indicated temperature under Ar atmosphere for 4 h (4-cyanopyridine 
and B2Pin2 added in two portions (first 1.5 equiv. each + 1.5 equiv. each after 2 h)). The structure of complex (S,S)-3a determined by single crystal XRD analysis 
(hydrogen atoms are omitted for clarity). Thermal ellipsoids are shown at the 50% probability level.

b Conversion determined by TLC analysis.
c A ratio of (S,S)/(S,R)-complexes 3a determined by 1H NMR analysis of the crude reaction mixture.
d Isolated yields.
e 20 h.
f 4 equivalents of 2a were added in two portions. MTBE = methyl tert-butyl ether. DIPEA = N,N-diisopropylethylamine. HFIP = hexafluoroisopropanol.
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complexes 3c and 3e into compounds 4c and 4d, a new stereogenic 
center was formed at the β-carbon atom. The complex 4c was isolated in 
71% yield with a poor diastereoselectivity of 1.4:1. On the other hand, a 
single diastereomeric complex 4d was obtained with 51% yield from 3e. 
The complex 3f was successfully converted into product 4e with geminal 
CF3 groups in 82% yield. The structure and absolute configuration of the 
complexes 4a, 4c and 4d were determined unambiguously by single 
crystal XRD analysis (Scheme 3). Notably, the configuration at the 
α-carbon atom in the AA moiety of the complexes 4a–4e differs due to a 
change in the order of substituents, following the Cahn-Ingold-Prelog 
(CIP) rules.

Another valuable and synthetically useful process is the removal of a 
terminal bromine atom from a molecule through hydrodehalogenation 
reaction [85]. First, we effected a Na2S2O4/NaHCO3 system mediated 
protodebromination reaction [86] of the complex (S,S)-3d (Method A, 
Scheme 4). Unexpectedly, we observed the formation of the cyclized Ni 
(II) complex (S,S)-5a as the major product with 56% yield. The structure 
and absolute configuration of the complex 5a were determined unam
biguously by single crystal XRD analysis (Scheme 4). On the other hand, 
the reaction of complex (S,S)-3h provided a similar product (S,S)-5b in 
49% yield accompanied by the protodebrominated complex (S,S)-6a in 
36% yield. Interestingly, in the case of the transformation of complex 3f, 
a mixture of two products was formed: protodebrominated complex (S, 
S)-6b (25% yield) and dehydrofluorinated complex [87] (S,S)-7 (24% 
yield). The steric hindrance of CF3 groups probably prevents the for
mation of the cyclized complex.

Next, the protodebromination process was investigated using the Zn 
dust/Cu(OAc)2 system (Method B, Scheme 4). A mixture of the com
plexes (S,S)-6b and (S,S)-7 was obtained starting from complex 3f with 
18% and 51% yields, respectively. On the other hand, this method 
allowed us to obtain predominantly the target product (S,S)-6a with an 
improved 49% yield.

Based on literature data [46–59], a mechanism for the radical 

hydrohaloalkylation reaction has been proposed (Scheme 5). The pro
cess begins with a 4-cyano-pyridine reacting with B2Pin2 to form an in 
situ pyridine-boron radical I. This radical then undergoes a 
single-electron transfer process (SET), activating a halocarbon molecule 
2 to generate a polyhaloalkyl radical II. Next, a double bond in complex 
1 acts as a radical acceptor, reacting with II to form intermediate 
complex III. This complex undergoes another SET reaction with another 
equivalent of radical I, resulting in a carbanion IV. Finally, the carb
anion is stereoselectively protonated with alcohol, completing the 
desired product (S,S)-3.

Finally, the practical applicability of the method was demonstrated 
through the exemplary isolation of two AAs, (S)-2-amino-4,4,4-tri
chlorobutanoic acid 8a and 8b, by the standard decomposition [66–78] 
of diastereomeric Ni(II) complexes (S,S)-3a and (S,S)-3h, respectively 
(Scheme 6). The heating of the corresponding complexes 3a and 3h in a 
mixture of 1N HCl and MeOH afforded the desired AAs 8a and 8b in 97% 
and 64% yields, respectively (Scheme 6). It is well-established that the 
acid-induced decomplexation of the corresponding chiral Ni(II) com
plexes in the presence of HCl results in the formation of α-AAs with 
preserving of enantiomeric purity [66–78] (see HPLC traces in the SI, 
Figs. S57 and S58). Importantly, the chiral auxiliary ligand can be 
readily recovered in enantiopure form as the hydrochloride salt from the 
decomposed reaction mixture with a yield of >90%. This can be ach
ieved through subsequent filtration and extraction processes, and the 
recovered ligand can then be reused for the synthesis of a new batch of 
the starting Ni(II) complex 1.

3. Conclusion

In summary, we have described a practical and useful radical 
hydropolyhaloalkylation reaction of an easily available and robust chi
ral Belokon’s dehydroalanine Ni(II) complex to access challenging 
enantiopure halogenated AAs. Coupling of the complex 1 with various 

Scheme 2. Substrate scope: evaluation of various halocarbons 2. Isolated yields are provided. aThe yields for gram-scale reactions are given in the parentheses. bIn 
addition to the main product (S,S)-3f, side products are formed, which contains a hydrogen atom and hydroxyl group instead of a bromine atom (see the SI for 
details). cDIPEA was used as an additive instead of HFIP.
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Scheme 3. Post-modification of complexes 3: the intramolecular cyclization reaction. Isolated yields are provided. aThe combined yields of (S,S,S)-4c and (S,S,R)-4c. 
The dr was determined by 1H NMR analysis. The structures of complexes 4a, 4c and 4d as determined by single crystal XRD analysis (hydrogen atoms are omitted for 
clarity). Thermal ellipsoids are shown at the 50% probability level.

Scheme 4. Post-modification of complexes 3: the protodebromination reaction. Isolated yields are provided. The structures of complexes 5a and 6b as determined by 
single crystal XRD analysis (hydrogen atoms are omitted for clarity). Thermal ellipsoids are shown at the 50% probability level.
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halocarbons mediated by a 4-cyano-pyrydine/B2Pin2 system resulted in 
a library of functionalized diastereomeric complexes in the range of 
31–65% yields. The practicality of the developed protocol was demon
strated by the further post-modification of the AA side chain, leading to 
the formation of complexes with a cyclopropane ring and products 
containing a protodebromination group. Finally, two enantiomerically 
pure α-AAs, including (S)-2-amino-4,4,4-trichlorobutanoic acid, were 
obtained through acid-induced decomposition of the corresponding 
chiral diastereomeric Ni(II) complexes along with the recovery of the 
chiral auxiliary.
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Scheme 5. A proposed mechanism for the radical coupling reaction of complex 1 with halocarbons 2.

Scheme 6. Isolation of AAs 8a and 8b after decomposition of the Ni(II) complexes 3a and 3h.
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