Numerical solution of first-order exact differential equations by the integrating factor method

A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a ''new'' numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss – Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients.

Предложен численный алгоритм решения дифференциальных уравнений в полных дифференциалах, основанный как на эффективном вычислении интегрирующих множителей, так и на «новом» численном методе интегрирования функций. Устойчивое определение интегрирующих множителей обеспечивается за счет использования чебышевской интерполяции искомых функций и проведения расчетов на сетках Гаусса – Лобатто, обеспечивающих дискретную ортогональность чебышевских матриц. После чего процедура интегрирования осуществляется с помощью чебышевских матриц интегрирования. Интегрирующий множитель и итоговый потенциал решения обыкновенного дифференциального уравнения представляются в виде интерполяционных полиномов, зависящих от ограниченного количества численно восстанавливаемых коэффициентов разложения.

Издательство
Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского
Номер выпуска
4
Язык
Английский
Страницы
512-525
Статус
Опубликовано
Том
24
Год
2024
Организации
  • 1 Peoples’ Friendship University of Russia named after Patrice Lumumba
  • 2 Joint Institute for Nuclear Research
Ключевые слова
spectral method; collocation; integrating factors; integration matrices; recovery of coefficients; inverse problem; спектральный метод; коллокация; интегрирующие множители; матрицы интегрирования; восстановление коэффициентов; обратная задача
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.