УСЛОВИЯ ОТСУТСТВИЯ РЕШЕНИЙ НЕКОТОРЫХ НЕРАВЕНСТВ И СИСТЕМ С ФУНКЦИОНАЛЬНЫМИ ПАРАМЕТРАМИ И СИНГУЛЯРНЫМИ КОЭФФИЦИЕНТАМИ НА ГРАНИЦЕ

Рассматривается проблема отсутствия положительных решений для некоторых нелинейных эллиптических неравенств в ограниченной области. При этом главные части исследуемых неравенств представляют собой операторы p(x)-Лапласа с переменными показателями степени. Младшие члены рассматриваемых неравенств могут зависеть как от значений искомой функции, так и от ее градиента. Предполагается, что коэффициенты младших членов обладают сингулярностями на границе. Насколько известно авторам, ранее условия отсутствия решений для неравенств с переменными показателями степени не рассматривались. Получены достаточные условия отсутствия положительных решений в терминах показателя степени p(x), порядка сингулярности и других параметров задачи. Для доказательства полученных условий используется авторская модификация метода нелинейной емкости, предложенного С.И. Похожаевым. Метод основан на специальном выборе пробных функций в слабой постановке задачи и на алгебраических преобразованиях полученных выражений. Это позволяет получить асимптотически оптимальные априорные оценки решений, приводящие к противоречию при определенном выборе параметров, из чего и делается вывод об отсутствии решений в этой ситуации. Приведено обобщение полученных результатов на случай нелинейных систем с аналогичными условиями на операторы и коэффициенты.

Unsolvability conditions for some inequalities and systems with functional parameters and singular coefficients on boundary

We consider the problem on nonexistence of positive solutions for some nonlinear elliptic inequalities in a bounded domain. At that, the principal parts of the considered inequalities are p(x)-Laplacians with variable exponents. The lower terms of the considered inequalities can depend both on the unknown function and its gradient. We assume that the coefficients at the lower terms have singularities at the boundary. To the best of the authors’ knowledge, the conditions for nonexistence of solutions to inequalities with variable exponents were not considered before. We obtain the sufficient conditions for nonexistence of positive solutions in terms of the exponent p(x), of the order of the singularities and of parameters in the problem. To prove the obtained conditions, we employ an original modification of the nonlinear capacity method proposed by S.I. Pokhozhaev. The method is based on a special choice of test functions in the generalized formulation of the problem and on algebraic transformations of the obtained expression. This allows us to obtain asymptotically sharp apriori estimates for the solutions leading to a contradiction under a certain choice of the parameters. This implies the absence of the solutions. We generalize the obtained results for the case of nonlinear systems with similar conditions for the operators and coefficients.

Издательство
Учреждение Российской академии наук Институт математики с вычислительным центром Уфимского научного центра Российской академии наук
Номер выпуска
1
Язык
Русский
Страницы
14-24
Статус
Опубликовано
Том
10
Год
2018
Организации
  • 1 Российский университет дружбы народов
  • 2 Московский государственный технологический университет «Станкин»
Ключевые слова
elliptic inequalities; variable exponents; nonexistence of solutions; singular coefficients; эллиптические неравенства; переменные показатели степени; отсутствие решений; сингулярные коэффициенты
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.