Интеллектуальные методы обработки

В настоящее время, в эру информационных технологий, интеллектуальные методы обработки данных занимают важное место в различных сферах жизни. Эти методы, совместно с современными алгоритмами и компьютерными моделями, позволяют извлекать ценную информацию из огромных объемов сырых данных, а также анализировать и прогнозировать различные явления и тренды. Рассмотрены ключевые концепции и принципы работы вейвлет-преобразования и стохастических методов, а также их взаимосвязь и возможности комбинированного применения в решении задач по обработке данных. Исследованы интеллектуальные методы обработки данных, сосредоточенные на вейвлет-преобразовании и стохастических методах, которые стали неотъемлемой частью современных бизнеспроцессов, предоставляя прогнозы, существенные для взвешенных решений. В исследовании использовалось вейвлет-преобразование и стохастические методы, позволяющие обнаруживать скрытые паттерны и тенденции в данных. Эти методы предоставили возможность анализировать данные различной структуры и масштаба, включая тексты, изображения, звук и видео. Вейвлет-преобразование обеспечило эффективное представление данных и многомасштабный анализ, в то время как стохастические методы использовались для моделирования неопределенности и проведения вероятностного анализа. Продемонстрировано, что применение вейвлет-преобразования способствовало выявлению значимых особенностей в анализируемых данных, тогда как стохастические методы обеспечивают надежные прогнозы на основе статистических моделей. Практическое применение этих методов на примерах из различных областей показало их высокую эффективность и значимость в научных и прикладных приложениях, что подтверждало актуальность и перспективность дальнейшего изучения и развития интеллектуальных методов обработки данных. Подтверждена важность вейвлет-преобразования и стохастических методов в контексте анализа больших объемов данных и предсказания различных явлений.

Nowadays, in the era of information technology, intelligent data processing methods play an important role in various spheres of life. These methods, together with modern algorithms and computer models, allow extracting valuable information from huge volumes of raw data, as well as analyzing and forecasting various phenomena and trends. The key concepts and principles of operation of the wavelet transform and stochastic methods, as well as their interrelation and possibilities of combined application in solving data processing problems are considered. Intelligent data processing methods focused on the wavelet transform and stochastic methods, which have become an integral part of modern business processes, providing forecasts essential for informed decisions, are investigated. The study used the wavelet transform and stochastic methods to detect hidden patterns and trends in data. These methods provided an opportunity to analyze data of various structures and scales, including texts, images, sound and video. The wavelet transform provided efficient data representation and multiscale analysis, while stochastic methods were used to model uncertainty and perform probabilistic analysis. It was demonstrated that the use of the wavelet transform contributed to the identification of significant features in the analyzed data, while stochastic methods provided reliable forecasts based on statistical models. Practical application of these methods on examples from various fields showed their high efficiency and significance in scientific and applied applications, which confirmed the relevance and prospects of further study and development of intelligent data processing methods. The importance of the wavelet transform and stochastic methods in the context of analyzing large amounts of data and predicting various phenomena was confirmed.

Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
3
Язык
Русский
Страницы
263-279
Статус
Опубликовано
Том
25
Год
2024
Организации
  • 1 Российский университет дружбы народов
Ключевые слова
wavelet transformation; wavelets; stochastic methods; statistical analysis; electroencephalogram; вейвлет-преобразование; вейвлеты; стохастические методы; статический анализ; электроэнцефалограмма
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.