A Posteriori Error Estimates for Approximate Solutions to the Obstacle Problem for the $p$ -Laplacian

The paper is concerned with a functional identity and estimates that are fulfilled for the measures of deviations from exact solutions of the obstacle problem for the $p $-Laplacian. They hold true for any functions from the corresponding (energy) functional class, which contains the generalized solution to the problem as well. We do not use any special properties of approximations or numerical methods nor information on the exact configuration of the coincidence set. The right-hand side of the identities and estimates contains only known functions and can be explicitly calculated, and the left-hand side represents a certain measure of the deviation of the approximate solution from the exact one. The right-hand side of the identity and estimates contains only known functions and can be explicitly calculated, while and the left-hand side represents a certain measure of the deviation of the approximate solution from the exact one. The obtained functional relations allow one to estimate the error of any approximate solutions to the problem regardless of the method of how they are obtained. In addition, they enable one to compare the exact solutions to problems with different data. The latter provides the possibility to estimate the errors of mathematical models.

Издательство
Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)
Номер выпуска
10
Язык
Английский
Страницы
1476-1490
Статус
Опубликовано
Том
60
Год
2024
Организации
  • 1 RUDN University
  • 2 St. Petersburg Branch of Steklov Mathematical Institute of the Russian Academy of Sciences
Ключевые слова
free boundary problems; $p $-Laplacian; A posteriori estimate
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.