Parabola As an Activation Function of Artificial Neural Networks

The use of the parabola and its branches as a nonlinearity expanding the logical capabilities of artificial neurons is considered. In particular, the applicability of parabola branches to the construction of an s-shaped function is suitable for tuning a neural network through reverse error propagation is determined. Solutions to typical problem of function XOR construction are shown using a rotated parabola. The main focus of modern research is to reduce computational complexity or, on the contrary, accelerate calculations by parallelizing a nonlinear function, i.e. by hardware redundancy.

Авторы
Khachumov M.V. 1, 2, 3 , Emelyanova Yu.G. 1
Издательство
Allerton Press, Inc.
Номер выпуска
5
Язык
Английский
Страницы
471-477
Статус
Опубликовано
Том
51
Год
2024
Организации
  • 1 Ailamazyan Program Systems Institute, Russian Academy of Sciences
  • 2 Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
  • 3 Peoples’ Friendship University of Russia
Ключевые слова
sigmoid; parabola; s-shaped activation function; neuron; neural network; XOR problem; Tuning rate
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.