ПРОГНОЗИРОВАНИЕ ОТТОКА КЛИЕНТОВ С ПОМОЩЬЮ ГИБРИДНОЙ ПОВТОРНОЙ ВЫБОРКИ И АНСАМБЛЕВОГО ОБУЧЕНИЯ

Since acquiring new customers is often more costly than retaining existing ones, customer retention management is critical for many business organizations. Researchers have applied supervised machine learning algorithms to customer churn prediction, regarding it as a binary classification problem. Among those algorithms used in previous studies, the most popular ones are logistic regression, K-Nearest Neighbor, and Decision Tree. Recent studies have shown that advanced ensemble learning models such as XGBoost, LightGBM, and CatBoost achieve high prediction performance in classification problems. However, only a few studies applied them to customer churn prediction. In many cases, the datasets used in customer churn prediction are imbalanced: with only a few churn cases and many non-churn cases. Therefore, previous studies have mainly applied Synthetic Minority Over-sampling Technique (SMOTE) to balance the data. Recently, researchers have proposed hybrid resampling such as SMOTE-ENN and SMOTE Tomek-Links as novel and effective resampling methods. However, few studies applied these hybrid methods to customer churn prediction. Therefore, by developing a prediction model combining ensemble learning algorithms and hybrid resampling methods and comparing the model's prediction performance with traditional methods and previous studies, this study aims tomake a unique contribution to research in customer churn prediction.

Сборник материалов конференции
Язык
Русский
Страницы
111-115
Статус
Опубликовано
Год
2024
Организации
  • 1 Российский университет дружбы народов им. Патриса Лумумбы
Ключевые слова
прогноз оттока клиентов; машинное обучение; задача несбалансированной классификации; ансамблевой метод; customer churn prediction; machine learning; imbalanced classification problem; ensemble method
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.