A practical solution to the problem of detecting peoples and vehicles from video frames

The research is dedicated to solving the problem of people and vehicle localization in video frames. Video frames of areas with forest and roads are used as test data. The algorithm from the modified “deep sort realtime” package is used for object tracking. In addition, the capability to use Yolo 8 for object detection has been added, as well as the ability to extract informative features using Mobilenet v3. For the input images is used letterbox preprocessing, and various optimizations affecting the quality and speed of results have been added. For license plate recognition, the “tflite avto num recognition” software package is used (which employs Canny and Hough transformations, as well as the CNNLSTM-CTC neural network). The obtained solutions work in real time and rely on open-source libraries.

Авторы
Язык
Английский
Страницы
45-50
Статус
Опубликовано
Год
2024
Организации
  • 1 Ailamazyan Program Systems Institute
  • 2 RUDN University
  • 3 Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Ключевые слова
object detection; tracking; yolo; DeepSORT; license plate recognition
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.
Живцова А.А., Бесчастный В.А., Самуйлов К.Е.
Распределенные компьютерные и телекоммуникационные сети: управление, вычисление, связь (DCCN-2024). 2024. С. 51-56