MLP ANN Equipped Approach to Measuring Scale Layer in Oil-Gas-Water Homogeneous Fluid by Capacitive and Photon Attenuation Sensors

Metering of various parameters is a very imperative task in the gas and oil industries. Therefore, many studies can be found that focus on measuring the volume fractions of multiphase flows without any interruption or separation in the process. One of the key factors highly impacting on the accuracy of the measurements is the scale layer formed in the pipelines. When there is a scale in the transmission lines, it significantly affects measurement accuracy, sensor performance, and fluid dynamics. In this paper, a new approach, including two distinct sensors, photon-attenuation-based and capacitance-based, in conjunction with an Artificial Neural Network (ANN), is presented to measure scale thickness in multiphase oil-gas-water homogeneous fluids. The intelligent model has 2 inputs. While the first input is generated by simulating a capacitive sensor, the concave type, in the COMSOL Multiphysics software, the second input comes from counting rays traveling from a Cobalt-60 source to a detector. This counting is calculated using the Beer-Lambert equations. By considering an interval equal to 10% of material in each ratio, in total, 726 data are accumulated resulting in collecting enough data to measure the scale thickness with a high level of precision. The investigated range for the thickness of the metering scale inside a pipe with a gas-oil-water homogeneous fluid is from 0 cm to 1 cm. Moreover, to reach the lowest amount of Mean Absolute Error (MAE), a number of networks with various hyperparameters were run in MATLAB software, and the best model had MAE equal to 0.46 illustrating the accuracy of the proposed metering system in predicting scale thickness.

Авторы
Mayet Abdulilah 1 , Mohammed S.A. 1 , Gorelkina E.I. 2, 3 , Hanus R. 4 , Grimaldo J.W. 5 , Qamar S. 6 , Loukil H. 7 , Shukla N.K. 7 , Chorzępa R. 4
Издательство
Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
Номер выпуска
2
Язык
Английский
Статус
Опубликовано
Том
44
Год
2025
Организации
  • 1 King Khalid University
  • 2 Peoples' Friendship University of Russia Named After Patrice Lumumba
  • 3 Sergo Ordzhonikidze Russian State University for Geological Prospecting
  • 4 Rzeszów University of Technology
  • 5 Universidad de La Costa
  • 6 King Khalid University
  • 7 King Khalid University
Ключевые слова
multiphase flows; Scale in pipelines; Scale metering; cobalt-60; Capacitance-based and photon-attenuation sensors; artificial neural network
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.
Драпкина О.М., Маев И.В., Ахмедов В.А., Вологжанина Л.Г., Долгушина А.И., Игумнова О.А., Козлова И.В., Лазебник Л.Б., Оковитый С.В., Пирогова И.Ю., Саенко А.А., Тарасова Л.В., Тихонова Т.А., Туркина С.В., Хлынов И.Б., Хлынова О.В., Цыганова Ю.В.
Экспериментальная и клиническая гастроэнтерология. 2024. С. 5-48