Numerical Solution of Time-Dependent Problems with Fractional Power Elliptic Operator

An unsteady problem is considered for a space-fractional equation in a bounded domain. A first-order evolutionary equation involves a fractional power of an elliptic operator of second order. Finite element approximation in space is employed. To construct approximation in time, standard two-level schemes are used. The approximate solution at a new time-level is obtained as a solution of a discrete problem with the fractional power of the elliptic operator. A Padé-type approximation is constructed on the basis of special quadrature formulas for an integral representation of the fractional power elliptic operator using explicit schemes. A similar approach is applied in the numerical implementation of implicit schemes. The results of numerical experiments are presented for a test two-dimensional problem.

Авторы
Номер выпуска
1
Язык
Английский
Страницы
111-128
Статус
Опубликовано
Том
18
Год
2018
Организации
  • 1 Nuclear Safety Institute|Russian Academy of Sciences
  • 2 Peoples' Friendship University of Russia
Ключевые слова
elliptic operator; Finite element approximation; Fractional power of an operator; stability of difference schemes; Two-level schemes
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.