Functions of triples of noncommuting self-adjoint operators under perturbations of class Sp

In this paper we study properties of functions of triples of not necessarily commuting self-adjoint operators. The main result of the paper shows that unlike in the case of functions of pairs of self-adjoint operators there is no Lipschitz type estimates in any Schatten-von Neumann norm Sp, 1 ≥ p ≥ ∞, for arbitrary functions in the Besov class B1 , 1(ℝ3). In other words, we prove that for p ∈ [1,∞], there is no constant K > 0 such that the inequality ||f(A1,B1,C1) - f(A2,B2,C2)||Sp ≤K||f||B1 ∞,1 max {||A1-A2||Sp, ||B1-B2||Sp, ||C1 - C2||Sp} holds for an arbitrary function f in B1 ∞,1 (ℝ3) and for arbitrary finite rank self-adjoint operators A1, B1, C1, A2, B2 and C2.

Авторы
Издательство
American Mathematical Society
Номер выпуска
4
Язык
Английский
Страницы
1699-1711
Статус
Опубликовано
Том
146
Год
2018
Организации
  • 1 Department of Mathematics|Michigan State University
  • 2 Peoples’ Friendship University of Russia|RUDN University
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.