More accurate classes of jensen–type inequalities for convex and operator convex functions

Motivated by a recent refinement of the scalar Jensen inequality obtained via linear interpolation, in this paper we develop a general method for improving two classes of Jensen-type inequalities for bounded self-adjoint operators. The first class refers to a usual convexity, while the second one deals with the operator convexity. The general results are then applied to quasi-arithmetic and power operator means. As a consequence, we obtain strengthened forms of the inequalities between arithmetic, geometric and harmonic operator means. We also obtain more accurate Young-type inequalities for unitarily invariant norms as well as more precise relations for some important jointly concave mappings.

Авторы
Choi D. 1 , Krni M. 2, 4 , Peari J. 3
Издательство
Element d.o.o.
Номер выпуска
2
Язык
Английский
Страницы
301-321
Статус
Опубликовано
Том
21
Год
2018
Организации
  • 1 Southern Illinois University|Edwardsville Department of Mathematics and Statistics
  • 2 University of Zagreb|Faculty of Electrical Engineering and Computing
  • 3 University of Zagreb|Faculty of Textile Technology
  • 4 RUDN University
Ключевые слова
convexity; Jensen inequality; Operator convexity; Operator mean; refinement; Young inequality
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.