Sobolev Type Inequalities, Euler–Hilbert–Sobolev and Sobolev–Lorentz–Zygmund Spaces on Homogeneous Groups

We define Euler–Hilbert–Sobolev spaces and obtain embedding results on homogeneous groups using Euler operators, which are homogeneous differential operators of order zero. Sharp remainder terms of Lp and weighted Sobolev type and Sobolev–Rellich inequalities on homogeneous groups are given. Most inequalities are obtained with best constants. As consequences, we obtain analogues of the generalised classical Sobolev type and Sobolev–Rellich inequalities. We also discuss applications of logarithmic Hardy inequalities to Sobolev–Lorentz–Zygmund spaces. The obtained results are new already in the anisotropic Rn as well as in the isotropic Rn due to the freedom in the choice of any homogeneous quasi-norm.

Авторы
Ruzhansky M. 1 , Yessirkegenov N. 1, 2 , Suragan D. 2, 3
Издательство
Birkhäuser Verlag AG
Номер выпуска
1
Язык
Английский
Страницы
10
Статус
Опубликовано
Том
90
Год
2018
Организации
  • 1 Department of Mathematics|Imperial College London
  • 2 Institute of Mathematics and Mathematical Modelling
  • 3 RUDN University
Ключевые слова
Euler-Hilbert-Sobolev space; Hardy inequality; homogeneous Lie group; Rellich inequality; Sobolev inequality; Sobolev-Lorentz-Zygmund space; weighted Sobolev inequality
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.