Using Neural Networks to Detect Anomalies in X-Ray Images Obtained with Full-Body Scanners

In this paper, we solve the problem of detecting anomalies in X-ray images obtained by full-body scanners (FBSs). The paper describes the sequence and description of image preprocessing methods used to convert the original images obtained with an FBS to images with visually distinguishable anomalies. Examples of processed images are given. The first (preliminary) results of using a neural network for anomaly detection are shown.

Издательство
Maik Nauka Publishing / Springer SBM
Номер выпуска
10
Язык
Английский
Страницы
1507-1516
Статус
Опубликовано
Том
83
Год
2022
Организации
  • 1 RUDN University
  • 2 Institute for Systems Analysis, Russian Academy of Sciences
Ключевые слова
full-body scanner; x-ray image; anomaly detection; image histogram equalization; neural network; U-2-Net; Calculus of Variations and Optimal Control; Optimization; Systems Theory; control; robotics; mechatronics; mechanical engineering; Computer-Aided Engineering (CAD; CAE) and Design
Цитировать
Поделиться

Другие записи