Local index formulae on noncommutative orbifolds and equivariant zeta functions for the affine metaplectic group

We consider the algebra A of bounded operators on L2(Rn) generated by quantizations of isometric affine canonical transformations. The algebra A includes as subalgebras noncommutative tori of all dimensions and toric orbifolds. We define the spectral triple (A,H,D) with H=L2(Rn,Λ(Rn)) and the Euler operator D, a first order differential operator of index 1. We show that this spectral triple has simple dimension spectrum: For every operator B in the algebra Ψ(A,H,D) generated by the Shubin type pseudodifferential operators and the elements of A, the zeta function ζB(z)=Tr(B|D|−2z) has a meromorphic extension to C with at most simple poles. Our main result then is an explicit algebraic expression for the Connes-Moscovici cocycle. As a corollary we obtain local index formulae for noncommutative tori and toric orbifolds. © 2022 Elsevier Inc.

Авторы
Savin A. , Schrohe E.
Издательство
Academic Press Inc.
Язык
Английский
Статус
Опубликовано
Номер
108624
Том
409
Год
2022
Организации
  • 1 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • 2 Leibniz University Hannover, Institute of Analysis, Welfengarten 1, Hannover, 30167, Germany
Ключевые слова
Local index formulae; Metaplectic operators; Noncommutative orbifolds; Spectral triple
Цитировать
Поделиться

Другие записи