An epidemic model with time delays determined by the infectivity and disease durations

We propose an epidemiological model with distributed recovery and death rates. It represents an integrodifferential system of equations for susceptible, exposed, infectious, recovered and dead compartments. This model can be reduced to the conventional ODE model under the assumption that recovery and death rates are uniformly distributed in time during disease duration. Another limiting case, where recovery and death rates are given by the delta-function, leads to a new point-wise delay model with two time delays corresponding to the infectivity period and disease duration. Existence and positiveness of solutions for the distributed delay model and point-wise delay model are proved. The basic reproduction number and the final size of the epidemic are determined. Both, the ODE model and the delay models are used to describe COVID-19 epidemic progression. The delay model gives a better approximation of the Omicron data than the conventional ODE model from the point of view of parameter estimation. © 2023 the Author(s)

Авторы
Saade M. , Ghosh S. , Banerjee M. , Volpert V.
Издательство
American Institute of Mathematical Sciences
Номер выпуска
7
Язык
Английский
Страницы
12864-12888
Статус
Опубликовано
Том
20
Год
2023
Организации
  • 1 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • 2 Department of Mathematics and Statistics, IIT Kanpur, Kanpur, 208016, India
  • 3 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France
Ключевые слова
disease duration; distributed recovery and death rates; epidemic model; time delay
Цитировать
Поделиться

Другие записи