Let L = −∆ + V be the Schrödinger operator on [Formula presented], where V ≠ 0 is a non-negative function satisfying the reverse Hölder class RHq1 for some q1 > n∕2. ∆ is the Laplacian on [Formula presented]. Assume that b is a member of the Campanato space Λθν(ρ) and that the fractional integral operator associated with L is [Formula presented]. We study the boundedness of the commutators [Formula presented] with b ∈ Λθν(ρ) on local generalized mixed Morrey spaces. Generalized mixed Morrey spaces [Formula presented], vanishing generalized mixed Morrey spaces[Formula presented], and [Formula presented] are related to the Schrödinger operator, in that order. We demonstrate that the commutator operator [Formula presented] is satisfied when b belongs to Λθν(ρ) with θ > 0, 0 < ν < 1, and (φ1, φ2) satisfying certain requirements are bounded from [Formula presented] to [Formula presented]; from [Formula presented] to [Formula presented], and from [Formula presented] to [Formula presented]. © 2024 the author(s), published by De Gruyter.