On isomorphisms of pseudo-Euclidean spaces with signature (p,n − p) for p = 2,3

As is well known, for every orthogonal transformation of the Euclidean space there exists an orthogonal basis such that the matrix of the transformation is block-diagonal with first order blocks ±1 and second order blocks that are rotations of the Euclidean plane. There exists a natural generalization of this theorem for Lorentz transformations of pseudo-Euclidean spaces with signature (1,n−1). In addition to invariant subspaces appearing in the Euclidean case, Lorentz transformations can have invariant subspaces of two new types: invariant plane with the Lorenz rotation and 3-dimensional cyclic subspace with isotropic eigenvector and eigenvalue ±1. In this paper, we present similar results about the structure of isomorphisms of pseudo-Euclidean spaces with signature (p,n−p) for p=2,3.

Авторы
Издательство
Elsevier Science Publishing Company, Inc.
Язык
Английский
Страницы
60-80
Статус
Опубликовано
Том
541
Год
2018
Организации
  • 1 RUDN University
  • 2 CMAP|Ecole Polytechnique
Ключевые слова
Cyclic spaces; decomposition; eigenvectors; Indefinite metrics; Jordan form; linear transformations; Pseudo-Euclidean vector spaces
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.