A Measure Associated with a Convex Surface and Its Limit Cone

This discussion explores the measure associated with a convex surface and its limit cone. In three-dimensional Euclidean space, a convex surface at infinity tends toward a cone of rotation, referred to as the limit cone. The boundedness of the difference between the area of the convex surface and that of the limit cone is established as a whole. The proof utilizes the flat sections of the surface, formed by intersecting planes that pass through the cone’s axis of symmetry.

Авторы
Ashyralyev A. 1, 2, 3 , Artikbayev A. 4
Издательство
Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)
Номер выпуска
5
Язык
Английский
Страницы
2312-2316
Статус
Опубликовано
Том
46
Год
2025
Организации
  • 1 Bahcesehir University, Department of Mathematics
  • 2 Institute of Mathematics and Mathematical Modeling
  • 3 Peoples’ Friendship University of Russia (RUDN University)
  • 4 Tashkent State Transport University
Ключевые слова
convex surface; limit cone; improper integral; asymptote; Support plane; surface area; limit; arc length
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.