Uniform Spectral Asymptotics for the Schrödinger Operator with Translation in Free Term and Periodic Boundary Conditions

We consider a nonlocal Schrödinger operator on the interval $(0,2\pi)$ with the periodic boundary conditions and a translation in the free term. The value of the translation is denoted by $a$ and is treated as a parameter. We show that the resolvent of such an operator is Hölder continuous in this parameter with the exponent $\frac{1}{2},$ the spectrum of this operator consists of infinitely many discrete eigenvalues accumulating at infinity, and all eigenvalues are continuous in $a\in[0,2\pi]$ and coincide for $a=0$ and $a=2\pi.$ Our main result is a uniform spectral asymptotics for the operator under consideration. Namely, we show that sufficiently large eigenvalues separate into pairs, each is located in the vicinity of the point $n^2,$ where $n$ in the index counting the eigenvalues, and we find a four-term asymptotics for these eigenvalues for large $n$ with the error term of order $O(n^{-3})$, and this term is uniform with respect to $a.$ We also discuss nontrivial high-frequency phenomena demonstrated by the uniform spectral asymptotics we have found. DOI 10.1134/S1061920825600552

Авторы
Borisov D.I. 1, 2, 3 , Polyakov D.M. 1, 4
Издательство
Pleiades Publishing, Ltd.
Номер выпуска
3
Язык
Английский
Страницы
434-450
Статус
Опубликовано
Том
32
Год
2025
Организации
  • 1 Institute of Mathematics, Ufa Federal Research Center, RAS
  • 2 Peoples Friendship University of Russia (RUDN University)
  • 3 Bashkir State Pedagogical University named after M. Akhmulla
  • 4 Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Science
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.