Detecting signals in noisy data via Bayesian approaches, machine learning, and neural networks

The objective of this work is to investigate the presence of clean signals in data with a high level of noise. The research focuses on the application of modern statistical methods, such as the Bayesian approach, combined with contemporary machine learning techniques and deep neural networks capable of detecting nonlinear patterns and improving accuracy in high-complexity scenarios. To achieve this goal, synthetic data containing both clean and distorted signals were used, employing spectral, temporal, and wavelet feature extraction techniques. Additionally, classi cation algorithms were applied to evaluate the e ectiveness of the proposed method. The integration of these approaches enabled the development of an analytical system capable of identifying hidden clean signals in noisy data and testing its e ciency under various conditions.

Авторы
Издательство
Российский университет дружбы народов (РУДН)
Язык
Английский
Страницы
285-288
Статус
Опубликовано
Год
2025
Организации
  • 1 RUDN University
Ключевые слова
Bayesian analysis; machine learning; neural networks; noisy data; signal detection
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.