Current research areas of dynamic migration and population models include the analysis of trajectory dynamics and solving parametric optimization problems using computer methods. In this paper we consider the population model “prey-migration area-predator-superpredator”, which is given by a system of four differential equations. The model takes into account trophic interactions, intraspecific and interspecific competition, as well as migration of the prey to the refuge. Using differential evolution parameters are found that ensure the coexistence of populations of prey, predator and superpredator, respectively, in the main habitat and the existence of a population of prey in a refuge. The transition to stochastic variants of the model based on additive noise, multiplicative noise and the method of constructing self-consistent models is performed. To describe the structure of the stochastic model the Fokker-Planck equations are used and a transition to a system of equations in the Langevin form is performed. Numerical solution of stochastic systems of differential equations is implemented by the Euler-Maruyama method. Computer experiments are conducted using a Python software package, and trajectories for deterministic and stochastic cases are constructed. A comparative analysis of deterministic model and corresponding stochastic models is carried out. The results can be used in solving problems of mathematical modeling of biological, ecological, physical, chemical and demographic processes.
К актуальным направлениям исследования динамических миграционно-популяционных моделей относятся анализ траекторной динамики и решение задач параметрической оптимизации с применением компьютерных методов. В настоящей работе рассматривается популяционная модель «жертва-ареал миграции-хищник-суперхищник», которая задаётся системой четырёх дифференциальных уравнений. В модели учитываются трофические взаимодействия, внутривидовая и межвидовая конкуренция, а также миграция жертвы в убежище. С помощью дифференциальной эволюции найдены параметры, обеспечивающие сосуществование популяций жертвы, хищника и суперхищника соответственно в основном ареале обитания и существование популяции жертвы в убежище. Выполнен переход к стохастическим вариантам модели на основе аддитивных шумов, мультипликативных шумов и метода построения самосогласованных моделей. Для описания структуры стохастической модели использованы уравнения Фоккера-Планка и выполнен переход к системе уравнений в форме Ланжевена. Численное решение стохастических систем дифференциальных уравнений реализовано методом Эйлера-Маруямы. С помощью программного комплекса на языке Python проведены компьютерные эксперименты, построены траектории для детерминированного и стохастических случаев. Проведён сравнительный анализ детерминированной и соответствующих ей стохастических моделей. Результаты могут найти применение при решении задач математического моделирования биологических, экологических, физических, химических и демографических процессов.