Reduction theorems for operators on the cones of monotone functions

For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in the Lp-Lq setting for 0<q<∞, 1≤p<∞. The case 0<p<1 is also studied for operators with additional properties. In particular, we obtain criteria for three-weight inequalities for the Hardy-type operators on monotone functions in the case 0<q<p≤1. © 2013 Elsevier Ltd.

Авторы
Gogatishvili A. 1 , Stepanov V.D. 2
Издательство
Academic Press Inc.
Номер выпуска
1
Язык
Английский
Страницы
156-172
Статус
Опубликовано
Том
405
Год
2013
Организации
  • 1 Institute of Mathematics of the Academy of Sciences of the Czech Republic, Zitna 25, 11567 Praha 1, Czech Republic
  • 2 Peoples' Friendship University of Russia, Miklucho Maklai 6, 117198 Moscow, Russian Federation
Ключевые слова
Hardy operator; Integral inequality; Lebesgue space; Monotone functions; Quasilinear operator; Weight
Цитировать
Поделиться

Другие записи