New bifurcation theorems via the second-order optimality conditions

We derive new sufficient conditions for bifurcation relying on subtle second-order necessary optimality conditions for abnormal equality-constrained optimization problems. We relate these conditions to the known ones, and demonstrate the cases when the new conditions are easier to verify. © 2009 Elsevier Inc. All rights reserved.

Авторы
Arutyunov A.V. 1 , Izmailov A.F. 2 , Jaćimović V. 3
Издательство
Academic Press Inc.
Номер выпуска
2
Язык
Английский
Страницы
752-764
Статус
Опубликовано
Том
359
Год
2009
Организации
  • 1 Peoples Friendship University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
  • 2 Moscow State University, Faculty of Computational Mathematics and Cybernetics, Department of Operations Research, Leninskiye Gori, GSP-2, 119992 Moscow, Russian Federation
  • 3 Faculty of Natural Sciences, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, Montenegro
Ключевые слова
2-normality; Bifurcation; Constant solution; Constrained optimization; Parametric nonlinear equation; Second-order optimality conditions
Цитировать
Поделиться

Другие записи

Buzyukova I., Gaidamaka Y., Yanovsky G.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Том 5764 LNCS. 2009. С. 143-153