Structural equation modeling for causal effect estimation with machine learning

Causal inference is a crucial framework in a variety of fields, such as economics, healthcare, and social science. In this context, data-driven machine learning models have become more popular for estimating the effects of treatments. One fundamental technique for causal inference is structural equation modeling (SEM), which makes it possible to estimate the relationships between variables. However, conventional SEM methods need help with the complexities of structural causal models (SCM) in real-world data, including latent confounders, nonlinear relationships, and challenges in accurately specifying model structures. These limitations could cause the interpretation or biased causal effects. To address these challenges, we introduce a new proposed method combining the piecewise structural equation modeling (PSEM) with the backdoor criterion, named PSEMBC. The main innovation of PSEMBC is the estimation of causal effects with the use of a linear SCM model, which captures complex relationships and interactions in the data. We demonstrate the value of PSEMBC for precisely and reliably identifying the average treatment effect (ATE) in simulated and real-world datasets utilizing a comparative study with current causal inference approaches. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ahmad Sohail 1 , Shah Kamal 2 , Debbouche Amar 3, 4
Издательство
Elsevier B.V.
Язык
Английский
Статус
Опубликовано
Номер
117020
Том
475
Год
2026
Организации
  • 1 School of Mathematics and Statistics, Central South University, Changsha, China
  • 2 Department of Mathematics, University of Malakand, Chakdara, Pakistan
  • 3 Department of Mathematics, Université 8 Mai 1945 Guelma, Guelma, Algeria
  • 4 RUDN University, Moscow, Russian Federation
Ключевые слова
Backdoor criterion; Causal inference; Confounding variables; Machine learning; Piecewise SEM; Structural causal model
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.