Off-policy reinforcement learning control for space manipulators based on object detection via convolutional neural networks

This paper proposes a vision-based control framework that integrates convolutional neural network-based object detection with off-policy reinforcement learning to address the engineering demands of autonomy, robustness, and high control performance in space manipulator operations, as well as to fill gaps in existing vision-based control research. A two-loop architecture comprising a detection loop and a control loop is constructed, with a combined-variable approach employed to simplify the complex image-space dynamics of the space manipulator. On the vision side, a state-of-the-art single-stage object detection network is enhanced with a depth regression module to provide real-time distance feedback. On the control side, an off-policy reinforcement learning algorithm is adopted to achieve model-free optimal control. The proposed integrated vision-based control strategy is validated through both verification and comparative simulations, demonstrating superior autonomy, robustness, and control performance, as well as advantages over the other representative vision-based control method. © 2025 Elsevier B.V., All rights reserved.

Авторы
Zhuang Hongji 1 , Lu Wenlong 1 , Shen Qiang 1 , Wu Shufan 1, 2 , Razoumny Vladimir Yu 2 , Razoumny Yury N. 2
Издательство
Elsevier Science Publishing Company, Inc.
Язык
Английский
Статус
Опубликовано
Номер
110914
Том
168
Год
2026
Организации
  • 1 Shanghai Jiao Tong University, Shanghai, China
  • 2 RUDN University, Moscow, Russian Federation
Ключевые слова
Object detection; Off-policy reinforcement learning; Space manipulator; Vision-based control
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.