Deep generative modeling of annotated bacterial biofilm images

Biofilms are critical for understanding environmental processes, developing biotechnology applications, and progressing in medical treatments of various infections. Nowadays, a key limiting factor for biofilm analysis is the difficulty in obtaining large datasets with fully annotated images. This study introduces a versatile approach for creating synthetic datasets of annotated biofilm images with employing deep generative modeling techniques, including VAEs, GANs, diffusion models, and CycleGAN. Synthetic datasets can significantly improve the training of computer vision models for automated biofilm analysis, as demonstrated with the application of Mask R-CNN detection model. The approach represents a key advance in the field of biofilm research, offering a scalable solution for generating high-quality training data and working with different strains of microorganisms at different stages of formation. Terabyte-scale datasets can be easily generated on personal computers. A web application is provided for the on-demand generation of biofilm images. © 2025 Elsevier B.V., All rights reserved.

Авторы
Holicheva Angelina A. 1 , Kozlov Konstantin S. 2 , Boiko Daniil A. 2 , Kamanin Maxim S. 1 , Provotorova Daria V. 1, 2 , Kolomoets Nikita I. 2 , Ananikov Valentine P. 2, 3
Издательство
Nature Research
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
16
Том
11
Год
2025
Организации
  • 1 Tula State University, Tula, Russian Federation
  • 2 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
  • 3 Department of Organic Chemistry, RUDN University, Moscow, Russian Federation
Ключевые слова
Acinetobacter baumannii; Arthrobacter halodurans; Article; autoencoder; bacterial strain; biofilm; brightness; calculation; computer vision; confocal laser scanning microscopy; diffusion; digital filtering; electron microscopy; generative adversarial network; generative model; image artifact; image processing; image segmentation; nonhuman; quantitative analysis; scanning electron microscopy; single cell analysis; Staphylococcus aureus; unsupervised machine learning; bacterium; classification; deep learning; genetics; growth, development and aging; procedures; Bacteria; Biofilms; Image Processing, Computer-Assisted
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.