Urban heat island dynamics in Rawalpindi: a 30-year remote sensing analysis and future projections

Urban Heat Islands (UHIs) pose a significant environmental challenge in rapidly urbanizing regions, influencing climate resilience, energy consumption, and public health. This study presents a comprehensive spatiotemporal analysis of UHI dynamics in Rawalpindi, Pakistan. Time-series analysis over 30 years (1990–2020) using Landsat satellite data processed through Google Earth Engine (GEE). Unlike previous studies, this research integrates a hybrid methodology. Random Forest classification for high-precision Land Use Land Cover (LULC) mapping correlates with the Statistical Mono-Window algorithm for accurate Land Surface Temperature (LST) estimation. The findings reveal a 22.2% increase in built-up areas. That impacts the past three decades, correlating with a 3.04 °C rise in LST, at an annual increment of 0.12 °C. This study applies the Cellular Automata-Artificial Neural Network (CA-ANN) model to project future UHI intensification in Rawalpindi. Results aim to forecast a 13.8% increase in built-up areas by 2030, which is expected to exacerbate thermal stress and energy demand. According to the results, the built-up area has grown highly erratic, mainly at the expense of vegetated land. A statistically significant correlation (r = 0.43) between LST and urban expansion underscores the urgency of adopting targeted mitigation strategies. Our research has some limitations; one of the important ones was that we could not assess multiple potential socio-economic drivers of urban growth because of a scarcity of spatial data. The results highlight the necessity for sustainable urban planning approaches, including integrating vegetation and heat-mitigating urban infrastructure to reduce thermal stress and enhance climate resilience. © 2025 Elsevier B.V., All rights reserved.

Авторы
Liyaqat Sundas 1 , Dasti Muhammad Yousaf Sardar 2 , Hussain Ejaz 1 , Mumtaz Faisal 3, 4 , Kucher Dmitry Evgenievich 5 , Tariq Aqil 6
Журнал
Издательство
Springer Nature
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
32760
Том
15
Год
2025
Организации
  • 1 Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad, Pakistan
  • 2 School of Geosciences and Info-Physics, Central South University, Changsha, China
  • 3 Aerospace Information Research Institute, Beijing, China
  • 4 University of Chinese Academy of Sciences, Beijing, China
  • 5 Department of Environmental Management, RUDN University, Moscow, Russian Federation
  • 6 Department of Wildlife, College of Forest Resources, Mississippi State, United States
Ключевые слова
CA-ANN modeling; Google earth engine; Land surface temperature; Random forest; Remote sensing; Urban heat island
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.