Truncated MobileNetV2 Sparse Vision Graph Attention Model for Explainable Monkeypox Disease Classification

The current outbreak of monkeypox (mpox) presents challenges for timely and accurate diagnosis due to the disease's diverse and unusual skin lesion patterns. Traditional deep learning models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), struggle with these irregular features because they rely on rigid, grid-based methods. To address this, we introduce the Truncated MobileNetV2 Sparse Vision Graph Attention (TMSVGA) model. TMSVGA combines components of MobileNetV2, which focuses on identifying smaller details, with a Sparse Vision Graph Attention block enhanced by a Squeeze-and-Excitation (SE) mechanism to improve channel-wise attention. This approach enhances the understanding of complex and long-distance relationships, emphasizing diagnostically significant regions and improving classification precision. We optimized TMSVGA using the Optuna framework for automated hyperparameter tuning. Additionally, Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME) provided interpretable visualizations, highlighting influential regions in decision-making. The TMSVGA model was validated on the Monkeypox Skin Images Dataset (MSID), achieving 96.79 % accuracy, 96.90 % precision, 95.34 % recall, 96.08 % F1-score, and 95.37% Matthews Correlation Coefficient (MCC). These results demonstrate that TMSVGA outperforms existing models, particularly in handling irregular lesion patterns. By achieving high diagnostic accuracy and precision, our study showcases the potential of Vision Graph Neural Networks (ViGNNs) in advancing medical image analysis for diseases with non-uniform spatial patterns. Furthermore, the lightweight architecture of TMSVGA ensures suitability for mobile and resource-constrained diagnostic applications. © 2025 Elsevier B.V., All rights reserved.

Авторы
Al-Gaashani Mehdhar S.A.M. 1 , Ba Mahel Abduljabbar S. 2 , Muthanna Ammar 3
Издательство
Elsevier B.V.
Язык
Английский
Статус
Опубликовано
Номер
114503
Том
330
Год
2025
Организации
  • 1 School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
  • 2 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
  • 3 Department of Applied Probability and Informatics, RUDN University, Moscow, Russian Federation
Ключевые слова
Deep learning; Explainable artificial intelligence; MobileNetV2; Mpox disease classification; Vision graph neural network
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.