Enhanced Mechanical Robustness of Sprayed Cellulose Nanofibril Coatings Through Internal Crosslinking with Boric Acid

The enhanced mechanical durability of sprayed nanocellulose coatings at the macroscopic level is primarily required to promote their application in demanding industrial applications with frequently exposed surfaces. In this study, different coating configurations are designed by spraying aqueous cellulose nanofiber (CNF) suspensions in combination with boric acid (BA) as an internal crosslinker and polydopamine (PDA) as an adhesive interlayer onto glass substrates. Multilayer coatings (CNF/BA) or mixed-layer coatings (CNF + BA) with various concentrations of BA and numbers of sprayed layers are evaluated for maximized mechanical performance based on tape tests, rub tests, cross-cut tests, and scratching tests. Good adhesive strength was realized with an interlayer of PDA/BA (high-concentration BA = 10 mM). The highest cohesive strength was observed for a mixed CNF + BA coating (high-concentration BA = 10 mM) with a scratch resistance of 9 N, and a multilayer CNF/BA coating (gradient layers with ultra-high BA concentration = 100 mM) with a scratch resistance of 8 N. The coatings with the highest density did not uniquely introduce the best mechanical resistance when comparing CNF/BA and CNF + BA coatings, as the formation of BA crystals in multilayer coatings might negatively affect the mechanical properties through embrittlement. Alternatively, the mixed CNF + BA coatings with high BA concentrations provide high density and the best mechanical resistance. The favorable crosslinking corresponds to stabilized water contact angles and reduced spreading of the water as a function of time, while a decrease in coating density causes a reduction in transparency. The chemical interactions between CNF and BA are illustrated by infrared spectroscopy, confirming a reduction in free hydroxyl groups upon crosslinking. © 2025 Elsevier B.V., All rights reserved.

Авторы
Samyn Pieter 1 , Cosemans Patrick 1 , Van Der Eycken Erik V. 2, 3 , Coppola Guglielmo Attilio 2
Журнал
Издательство
Multidisciplinary Digital Publishing Institute (MDPI)
Номер выпуска
18
Язык
Английский
Статус
Опубликовано
Номер
2451
Том
17
Год
2025
Организации
  • 1 Department of Innovations in Circular Economy and Renewable Materials, Sirris, Brussels, Belgium
  • 2 Department of Chemistry, KU Leuven, Leuven, Belgium
  • 3 Department of Organic Chemistry, RUDN University, Moscow, Russian Federation
Ключевые слова
boric acid; coating; crosslinking; mechanical testing; nanocellulose
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.