Predicting Grade and Patient Survival in Renal Cancer Using Machine Learning Analysis of Nucleolar Prominence

Background: Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods: We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. Results: The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. Conclusion: These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ivanova Elena I. 1, 2 , Fayzullin Alexey L. 1, 3 , Grinin Victor 4 , Zhavoronkov Dmitry 4 , Ermilov Dmitry 4 , Balyasin Maxim V. 5 , Timakova Anna A. 1 , Bakulina Alesia A. 1 , Osmanov Yu I. 6 , Rudenko Ekaterina Evgenievna 6 , Arutyunyan Alexander 4 , Parchiev Ruslan 7 , Shved Nina 8 , Astaeva M.O. 9 , Lychagin Aleksey Vladimirovich 10 , Demura T.A. 6 , Timashev Peter S. 1, 3
Журнал
Издательство
John Wiley and Sons Inc
Номер выпуска
17
Язык
Английский
Статус
Опубликовано
Номер
e71196
Том
14
Год
2025
Организации
  • 1 Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 2 Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
  • 3 Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 4 VimpelCom, Moscow, Russian Federation
  • 5 Scientific and Educational Resource Center, RUDN University, Moscow, Russian Federation
  • 6 Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 7 Neuronet Department, Moscow, Russian Federation
  • 8 Skolkovo Innovative Center, Moscow, Russian Federation
  • 9 Department of Faculty Surgery, Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 10 Department of Trauma, Sechenov First Moscow State Medical University, Moscow, Russian Federation
Ключевые слова
artificial intelligence; computational pathology; computer vision; digital pathology; renal cell carcinoma
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.