Modeling and Simulation of Attraction–Repulsion Chemotaxis Mechanism System with Competing Signal

This paper addresses an attraction–repulsion chemotaxis system governed by Neumann boundary conditions within a bounded domain (Formula presented.) that has a smooth boundary. The primary focus of the study is the chemotactic response of a species (cell population) to two competing signals. We establish the existence and uniqueness of a weak solution to the system by analyzing the solvability of an approximate problem and utilizing the Leray–Schauder fixed-point theorem. By deriving appropriate a priori estimates, we demonstrate that the solution of the approximate problem converges to a weak solution of the original system. Additionally, we conduct computational studies of the model using the finite element method. The accuracy of our numerical implementation is evaluated through error analysis and numerical convergence, followed by various numerical simulations in a two-dimensional domain to illustrate the dynamics of the system and validate the theoretical findings. © 2025 Elsevier B.V., All rights reserved.

Авторы
Aswathi Anandan P. 1 , Debbouche Amar 2, 3 , Karuppusamy Yadhavan 1 , Shangerganesh Lingeshwaran 1
Журнал
Издательство
MDPI
Номер выпуска
15
Язык
Английский
Статус
Опубликовано
Номер
2486
Том
13
Год
2025
Организации
  • 1 Department of Applied Sciences, National Institute of Technology Goa, Ponda, India
  • 2 Department of Mathematics, Université 8 Mai 1945 Guelma, Guelma, Algeria
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
attraction–repulsion; chemotaxis; finite element method; Leray–Schauder fixed point; weak solution
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.