On the local solvability and stability of the partial inverse problems for the non-self-adjoint Sturm-Liouville operators with a discontinuity

In this work, we study the inverse spectral problems for the Sturm-Liouville operators on [0, 1] with complex coefficients and a discontinuity at x = a ∈ (0, 1). Assume that the potential on (a, 1) and some parameters in the discontinuity and boundary conditions are given. We recover the potential on (0, a) and the other parameters from the eigenvalues. This is the so-called partial inverse problem. The local solvability and stability of the partial inverse problems are obtained for a ∈ (0, 1), in which the error caused by the given partial potential is considered. Moreover, we obtain two new uniqueness theorems for the partial inverse problem. The results here generalize the previous work of Yang and Bondarenko [J. Differ. Equations 268, 6173-6188 (2020)], which only considered the self-adjoint case for a ∈ (0, 1/2] and did not take into account the error caused by the given partial potential. © 2025 Elsevier B.V., All rights reserved.

Авторы
Xu Xiaochuan 1, 2 , Yang Chuanfu 3 , Bondarenko Natalia P. 4
Издательство
American Institute of Physics
Номер выпуска
8
Язык
Английский
Статус
Опубликовано
Номер
081504
Том
66
Год
2025
Организации
  • 1 School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing, China
  • 2 Nanjing University of Information Science & Technology, Nanjing, China
  • 3 School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, China
  • 4 S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russian Federation
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.