Uniform stability of the inverse problem for the non-self-adjoint Sturm–Liouville operator

In this paper, we develop a new approach to investigation of the uniform stability for inverse spectral problems. We consider the non-self-adjoint Sturm–Liouville problem that consists in the recovery of the potential and the parameters of the boundary conditions from the eigenvalues and the generalized weight numbers. The special case of simple eigenvalues, as well as the general case with multiple eigenvalues, is studied. We find various subsets in the space of spectral data, on which the inverse mapping is Lipschitz continuous, and obtain the corresponding unconditional uniform stability estimates. Furthermore, the conditional uniform stability of the inverse problem under a priori restrictions on the potential is studied. In addition, we prove the uniform stability of the inverse problem by the Cauchy data, which are convenient for numerical reconstruction of the potential and for applications to partial inverse problems. © 2025 Elsevier B.V., All rights reserved.

Авторы
Издательство
John Wiley and Sons Inc
Номер выпуска
8
Язык
Английский
Страницы
2814-2844
Статус
Опубликовано
Том
298
Год
2025
Организации
  • 1 Department of Mechanics and Mathematics, Saratov State University, Saratov, Russian Federation
  • 2 S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russian Federation
  • 3 Lomonosov Moscow State University, Moscow, Russian Federation
Ключевые слова
inverse spectral problems; method of spectral mappings; non-self-adjoint Sturm–Liouville operator; uniform stability
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.