Machine Learning-Based Failure Prediction in Concrete Slabs and Cubes Under Impact Loading

Experts have been interested in the behavior of concrete under impact loading because of its wide range of applications in construction projects. Due to their quasi-brittle nature, failure modes related to concrete may occur without any prior warning signs of destruction, and they also expose the supporting element to the spread of damage. Finite element modeling and machine learning techniques are essential for conducting an adequate reliability investigation of the behavior of concrete samples as slabs and cubes under impact load. The research uses gradient boosting, random forest, lasso, linear regression, and support vector regression to create predictive models for the behavior of these two concrete models. The models were created by taking experimental concrete slab tests and 20 cubes into consideration. Design standards-based statistical comparisons such as coefficient of determination and root mean square error are used to assess the efficacy of the generated models. These results show that with increasing impact load intensity, displacements and failures in the slab increase significantly. Using these models allows engineers to design more resistant and optimal structures against impact loads. This research shows that machine learning models, especially random forest and gradient boosting, can provide accurate predictions of failures and cracks in concrete under impact loads and are useful tools for analyzing concrete behavior under dynamic and complex conditions. The linear regression with a coefficient of determination (R2) of 0.995 and lasso regression with RMSE of 3.9 have the lowest accuracy, while random forest and gradient boosting models with R2 of 0.9991 and 0.2, 0.991 and 0.5. respectively, showed higher accuracy in predicting concrete cracks and failures. © 2025 Elsevier B.V., All rights reserved.

Авторы
Hematibahar Mohammad 1 , Farouk Deifalla Ahmed Farouk 2 , Ragab Adham Ezzat 3 , Tesfaldet Gebre 1
Издательство
John Wiley and Sons Inc
Номер выпуска
7
Язык
Английский
Статус
Опубликовано
Номер
e70313
Том
7
Год
2025
Организации
  • 1 Department of Architecture, RUDN University, Moscow, Russian Federation
  • 2 Faculty of Engineering & Technology, New Cairo, Egypt
  • 3 Environics Environmental Consulting Firm, Cairo, Egypt
Ключевые слова
compressive strength; concrete; impact loading; machine learning; python; regression
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.
Sergeeva Nataliya S., Krokhicheva Polina A., Sviridova Irina K., Goldberg Margarita A., Khairutdinova Dinara R., Akhmedova Suraya A., Kirsanova Valentina A., Antonova Olga S., Fomin Alexander Sergeevich, Mikheev Ivan V., Leonov Aleksander V., Karalkin Pavel Anatolievich, Rodionov S.A., Barinov Serguei M., Komlev Vladimir S., Kaprin Andrey D.
International Journal of Molecular Sciences. Том 26. 2025.