Structural Stability and General Relativity

We review recent developments in structural stability as applied to key topics in general relativity. For a nonlinear dynamical system arising from the Einstein equations by a symmetry reduction, bifurcation theory fully characterizes the set of all stable perturbations of the system, known as the ‘versal unfolding’. This construction yields a comprehensive classification of qualitatively distinct solutions and their metamorphoses into new topological forms, parametrized by the codimension of the bifurcation in each case. We illustrate these ideas through bifurcations in the simplest Friedmann models, the Oppenheimer-Snyder black hole, the evolution of causal geodesic congruences in cosmology and black hole spacetimes, crease flow on event horizons, and the Friedmann–Lemaître equations. Finally, we list open problems and briefly discuss emerging aspects such as partial differential equation stability of versal families, the general relativity landscape, and potential connections between gravitational versal unfoldings and those of the Maxwell, Dirac, and Schrödinger equations. © 2025 Elsevier B.V., All rights reserved.

Авторы
Cotsakis
Журнал
Издательство
Multidisciplinary Digital Publishing Institute (MDPI)
Номер выпуска
7
Язык
Английский
Статус
Опубликовано
Номер
209
Том
11
Год
2025
Организации
  • 1 Clare Hall Cambridge, Cambridge, United Kingdom
  • 2 Institute of Gravitation and Cosmology, RUDN University, Moscow, Russian Federation
Ключевые слова
bifurcation theory; black holes; cosmology; dynamical systems; general relativity; structural stability
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.