Associative Hypercomplex Algebras Arise over a Basic Set of Subgeometric One-Dimensional Elements

An abstract set of one-dimensional (spinor-type) elements randomly oriented on a plane is introduced as a basic subgeometric object. Endowing the set with the binary operations of multiplication and invertible addition sequentially yields a specific semi-group (for which an original Cayley table is given) and a generic algebraic system which is shown to generate, apart from algebras of real and complex numbers, the associative hypercomplex algebras of dual numbers, split-complex numbers, and quaternions. The units of all these algebras turn out to be composed of basic 1D elements, thus ensuring the automatic fulfillment of multiplication rules (once postulated). From the standpoint of a three-dimensional space defined by a vector quaternion triad, the condition of a standard (unit) length of 1D basis elements is considered; it is shown that fulfillment of this condition provides an equation mathematically equivalent to the main equation of quantum mechanics. The similarities and differences of the proposed logical scheme with other approaches that involve abstract subgeometric objects are discussed. © 2025 Elsevier B.V., All rights reserved.

Авторы
Журнал
Издательство
MDPI
Номер выпуска
13
Язык
Английский
Статус
Опубликовано
Номер
2105
Том
13
Год
2025
Организации
  • 1 RUDN University, Moscow, Russian Federation
Ключевые слова
algebraic system; binary operation; Cayley table; hypercomplex numbers; quantum mechanics
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.