The problem of reconstruction for static spherically-symmetric 4D metrics in scalar-Einstein–Gauss–Bonnet model

We consider the 4D gravitational model with a scalar field φ, Einstein and Gauss–Bonnet terms. The action of the model contains a potential term U(φ), Gauss–Bonnet coupling function f(φ) and a parameter ε=±1, where ε=1 corresponds to ordinary scalar field and ε=-1 - to phantom one. Inspired by the recent works of Nojiri and Nashed, we explore a reconstruction procedure for a generic static spherically symmetric metric written in the Buchdal parametrization: ds2=A(u)-1du2-A(u)dt2+C(u)dΩ2, with given A(u)>0 and C(u)>0. The procedure gives the relations for U(φ(u)), f(φ(u)) and dφ/du, which lead to exact solutions to equations of motion with a given metric. A key role in this approach is played by the solutions to a second order linear differential equation for the function f(φ(u)). The formalism is illustrated by two examples when: a) the Schwarzschild metric and b) the Ellis wormhole metric, are chosen as a starting point. For the first case a) the black hole solution with a “trapped ghost” is found which describes an ordinary scalar field outside the photon sphere and phantom scalar field inside the photon sphere. For the second case b) the sEGB-extension of the Ellis wormhole solution is found when the coupling function reads: f(φ)=c1+c0(tan(φ)+13(tan(φ))3), where c1 and c0 are constants. © 2025 Elsevier B.V., All rights reserved.

Издательство
Springer-Verlag GmbH
Номер выпуска
7
Язык
Английский
Статус
Опубликовано
Номер
756
Том
85
Год
2025
Организации
  • 1 Institute of Gravitation and Cosmology, RUDN University, Moscow, Russian Federation
  • 2 Center for Gravitation and Fundamental Metrology, Scientific Research Center of Applied Metrology Rostest, Moscow, Russian Federation
Ключевые слова
Equations of motion; Gaussian distribution; Gravitation; Relativity; Spheres; Statistical mechanics; Tantalum compounds; Coupling functions; Equation of motion; Exact solution; Gravitational model; Parametrizations; Phantoms; Reconstruction procedure; Scalar fields; Second order linear differential equation; Symmetrics; Photons
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.