Uniform stability for the inverse Sturm-Liouville problem with eigenparameter-dependent boundary conditions

We consider a class of self-adjoint Sturm-Liouville problems with rational functions of the spectral parameter in the boundary conditions. The uniform stability for direct and inverse spectral problems is proved for the first time for Sturm-Liouville operator pencils with boundary conditions depending on the eigenparameter. Furthermore, we obtain stability estimates for finite data approximations, which are important from the practical viewpoint. Our method is based on Darboux-type transforms and proving of their Lipschitz continuity. © 2025 Elsevier B.V., All rights reserved.

Авторы
Издательство
American Institute of Physics
Номер выпуска
6
Язык
Английский
Статус
Опубликовано
Номер
063503
Том
66
Год
2025
Организации
  • 1 Department of Mechanics and Mathematics, Saratov State University, Saratov, Russian Federation
  • 2 Department of Applied Mathematics, Samara National Research University, Samara, Russian Federation
  • 3 S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russian Federation
  • 4 Lomonosov Moscow State University, Moscow, Russian Federation
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.