Privacy-preserving federated UAV data collection framework for autonomous path optimization in maritime operations

Ensuring data privacy and operational security has become critical in light of escalating cyber threats and the logistical complexity of autonomous maritime operations. Autonomous maritime systems face such challenges in securely processing and managing large amounts of real-time data while maintaining resilience against cyber attacks. This paper considers these challenges by presenting a federated privacy-preserving UAV data collection framework to optimize autonomous path planning and protect sensitive maritime information. Using UAVs as edge nodes for decentralized data processing allows the framework to integrate federated learning, maintain data privacy, and improve cybersecurity. The proposed framework contains five distinct layers, where the data collection layer's role is to collect real-time data on vessel and environmental conditions. The privacy-preserving edge intelligence layer enables secure localized data processing at the edge. The threat mitigation and optimization layer performs machine learning models for route optimization and intrusion detection. The orchestration layer is implemented to coordinate UAV operations and manages aggregated model parameters for system-wide efficiency, whereas the user interaction layer provides operators with secure, real-time insights into system performance and operational metrics. Simulations and implementations demonstrate that this multilayered architecture improves route accuracy, fortifies data security, and achieves a 20% reduction in emissions, underscoring its potential to advance autonomous navigation and secure, efficient mission planning in maritime cyber–physical systems. The proposed edge-intelligent federated UAV system demonstrates superior performance compared to other approaches, achieving the highest accuracy (99.1%), F1 score (98.9%), and recall (99.3%), while utilizing a larger hybrid dataset (80,000 samples) with 30 features, optimized through principal component analysis, and addressing multiple target attributes such as CO2 emissions, energy efficiency, and route accuracy. © 2025 Elsevier B.V., All rights reserved.

Авторы
Wei Min 1 , Muthanna Mohammed Saleh Ali 1 , Ibrahim Maha 2 , Alkanhel Reem Ibrahim 3 , Muthanna Ammar 4 , Abdelkader Laouid Azzeddine 5
Издательство
Elsevier Science Publishing Company, Inc.
Язык
Английский
Статус
Опубликовано
Номер
112906
Том
173
Год
2025
Организации
  • 1 College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China
  • 2 Department of International Business Management, Tashkent State University of Economics, Tashkent, Uzbekistan
  • 3 Department of Information Technology, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
  • 4 RUDN University, Moscow, Russian Federation
  • 5 LIAP Laboratory, Université d’Echahid Hamma Lakhdar – El-oued, El Oued Province, Algeria
Ключевые слова
Autonomous path planning; Edge computing; Federated learning; Maritime operations; Privacy-preserving; Route optimization; UAV data collection
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.