Investigating voice onset time in Pakistani English speech

The current study investigates the Voice Onset Time (VOT) of Pakistani English (PE) Speech and Sindhi L1. The study hypothesizes that PE speakers transmit their L1 negative VOT to L2 English-voiced stops, generate English plosives with shorter pre-voicing durations than their L1-voiced plosives, and that their characteristics modify depending on place of articulation and gender. The stimuli were L2 English coronal and dorsal allophones, namely labial [pʰ], coronal [tʰ], and velar [kʰ], while Sindhi L1 distinct phonemes as aspirated labial /pʰ/, retroflex / ʈʰ/, velar / kʰ/ consonants: bilabial /b/, alveolar /d/, and velar /ɡ/. Voice Onset Time is an important acoustic element in the generation of plosives and has been extensively investigated in numerous languages. Machine learning modeling of VOT in second language (L2) learning yields useful data in phonetics, speech processing, and linguistics. To analyze and understand the data, the study applies advanced computer techniques such as speech recognition and machine learning modelling. This study presents useful insights into the Voice Onset Time patterns and variances in the two languages, which can aid in the development of better speech recognition algorithms and language teaching materials. The sample size was thirty individuals-Sindhi speaking second language learners who recorded voice samples, and the results confirmed the hypotheses. © 2024 Elsevier B.V., All rights reserved.

Авторы
Abbasi Abdul Malik 1 , Hussain Imtiaz 2 , Bakhsh Illahi 3 , KAMEH KHOSH NEDA 4 , Khan Ahlam 5
Издательство
Elsevier B.V.
Язык
Английский
Статус
Опубликовано
Номер
103174
Том
168
Год
2025
Организации
  • 1 Faculty of Language and Culture Studies, Sindh Madressatul Islam University, Karachi, Pakistan
  • 2 Department of Artificial Intelligence and Mathematical Sciences, Sindh Madressatul Islam University, Karachi, Pakistan
  • 3 Institute of English Language and Literature, University of Sindh, Jamshoro, Pakistan
  • 4 RUDN University, Moscow, Russian Federation
  • 5 Sindh Madressatul Islam University, Karachi, Pakistan
Ключевые слова
Algorithms; Consonants; Machine learning; Pakistani English speech voiceless; Place of articulation; Plosives; Speech recognition; Voice onset time; Voiced
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.