Energy-Efficient Framework for Task Caching and Computation Offloading in Multi-tier Vehicular Edge-Cloud Systems

The proliferation of mobile Internet of Things (IoT) applications like autonomous vehicles and augmented reality demands processing power beyond traditional devices. Vehicular Edge-Cloud Computing (VECC) emerges as a solution, leveraging distributed computing resources at the network’s edge (e.g., roadside units) and the cloud for remote task execution. However, energy efficiency remains a concern. This paper proposes an energy-efficient framework for VECC. To optimize resource utilization, a caching mechanism stores completed tasks at the edge server for faster retrieval. Additionally, an optimization model minimizes energy consumption while adhering to latency constraints during task offloading and resource allocation. Simulations demonstrate significant energy savings compared to existing benchmarks. This framework addresses both energy efficiency and resource allocation challenges in VECC systems. © 2025 Elsevier B.V., All rights reserved.

Авторы
Elgendy Ibrahim A. 1 , Khakimov Abdukodir A. 1, 2 , Muthanna Ammar 2
Издательство
Springer-Verlag GmbH
Язык
Английский
Страницы
42-53
Статус
Опубликовано
Том
15460 LNCS
Год
2025
Организации
  • 1 KFUPM Business School, Dhahran, Saudi Arabia
  • 2 RUDN University, Moscow, Russian Federation
Ключевые слова
Autonomous Vehicles; Task Caching; Task Offloading; Vehicular Edge-Cloud Computing
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.