Randomized Algorithms for Computing the Generalized Tensor SVD Based on the Tensor Product

This work deals with developing two fast randomized algorithms for computing the generalized tensor singular value decomposition (GTSVD) based on the tensor product (T-product). The random projection method is utilized to compute the important actions of the underlying data tensors and use them to get small sketches of the original data tensors, which are easier to handle. Due to the small size of the tensor sketches, deterministic approaches are applied to them to compute their GTSVD. Then, from the GTSVD of the small tensor sketches, the GTSVD of the original large-scale data tensors is recovered. Some experiments are conducted to show the effectiveness of the proposed approach. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ahmadi-Asl Salman 1, 2 , Rezaeian Naeim 2 , Ugwu Ugochukwu O. 3
Издательство
Springer Nature
Язык
Английский
Статус
Опубликовано
Год
2025
Организации
  • 1 Lab of Machine Learning and Knowledge Representation, Innopolis University, Innopolis, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
  • 3 Department of Mathematics, Colorado State University, Fort Collins, United States
Ключевые слова
Generalized tensor singular value decomposition (GTSVD); Randomized algorithms; Tensor product (T-product)
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.