Toward a Species Search Engine: KISSE Offers a Rigorous Statistical Framework for Bone Collagen Tandem Mass Spectrometry Data

DNA and bone collagen are two key sources of resilient molecular markers used to identify species from their remains. Collagen is more stable than DNA, and thus it is preferred for ancient and degraded samples. Current mass spectrometry-based collagen sequencing approaches are empirical and lack a rigorous statistical framework. Based on the well-developed approaches to protein identification in shotgun proteomics, a first approximation of the species search engine (SSE) is introduced. SSE named KISSE is based on a species-specific library of collagenous peptides that uses both peptide sequences and their relative abundances. The developed statistical model can identify the species and the probability of correct identification, as well as determine the likelihood of the analyzed species not being in the library. The advantages and limitations of the proposed approach, and the possibility of extending it to other tissues is discussed. © 2025 Elsevier B.V., All rights reserved.

Авторы
Gharibi Hassan 1, 2, 3 , Saei Amir Ata 4 , Chernobrovkin Alexey L. 5 , Lundström Susanna L. 1, 2 , Lyu Hezheng 1 , Meng Zhaowei 1, 2 , Végvári Ákos 1 , Gaetani Massimilliano 1, 2, 3 , Zubarev Roman A. 1, 2, 3, 6, 7
Журнал
Язык
Английский
Статус
Опубликовано
Год
2025
Организации
  • 1 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
  • 2 Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Stockholm, Sweden
  • 3 Chemical Proteomics Unit, Science for Life Laboratory, Solna, Sweden
  • 4 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
  • 5 Pelago Bioscience AB, Solna, Sweden
  • 6 Department of Pharmacological & Technological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 7 Department of Pharmaceutical and Toxicological Chemistry, RUDN University, Moscow, Russian Federation
Ключевые слова
collagen sequences; LC-MS/MS; proteomics; species Identification
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.