Transformer-Based Deep Learning for Mesoscale Eddy Detection in Sea Surface Temperature Maps

Mesoscale eddies are dynamic oceanic phenomena significantly influencing marine ecosystems’ energy transfer, nutrients, and biogeochemical cycles. These eddies’ precise identification and categorization can improve climate modeling, ocean circulation research, and environmental surveillance. This study presents an innovative methodology for mesoscale eddy detection utilizing Transformer-based deep learning models, namely, Swin Transformer U-Net and SegFormer, to categorize ocean eddies from sea surface temperature (SST) maps sourced from the copernicus marine environment monitoring service. In contrast to traditional convolutional neural networks (CNNs) that have prevailed in the domain, Transformer-based models provide superior global attention mechanisms, facilitating greater feature extraction and segmentation precision. The models are trained on labeled SST datasets and assessed using intersection over union, Dice coefficient, precision, recall, and F1-score. Experimental findings demonstrate that Transformer-based designs surpass conventional CNN-based techniques, yielding enhanced generalization and superior accuracy in classifying cyclonic and anticyclonic eddies. This study illustrates the efficacy of attention-based segmentation algorithms for resilient oceanographic applications. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ji Chen 1 , Xu Wenyang 2 , Zheng Xiangtian 2 , Ahmed Yasmeen 3 , Jamal Saad Ahmed 4, 5, 6 , Imam Fakhar 7 , Muthanna Mohammed Saleh Ali 8 , Ibrahim Maha 8 , Ullah Sajid 9 , Kucher Dmitry Evgenievich 10
Издательство
Institute of Electrical and Electronics Engineers Inc.
Язык
Английский
Страницы
15249-15264
Статус
Опубликовано
Том
18
Год
2025
Организации
  • 1 School of Geography and Ocean Science, Nanjing University, Nanjing, China
  • 2 Nanjing Institute of Technology, Nanjing, China
  • 3 College of Architecture, Art and Design, Mississippi State, United States
  • 4 University of Évora, Evora, Portugal
  • 5 Department of Computer Science, Université de Bretagne-Sud, Lorient, France
  • 6 Department of Geoinformatics, Universität Salzburg, Salzburg, Austria
  • 7 University of the Punjab, Lahore, Pakistan
  • 8 Department of International Business Management, Tashkent State University of Economics, Tashkent, Uzbekistan
  • 9 Department of Water Resources and Environmental Engineering, Nangarhar University, Jalalabad, Afghanistan
  • 10 Department of Environmental Management, RUDN University, Moscow, Russian Federation
Ключевые слова
Deep learning; ocean eddies; remote sensing; sea surface temperature (SST) data; SegFormer; semantic segmentation; swin transformer
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.