ON EXTENDED k-GENERALIZED MITTAG-LEFFLER FUNCTION AND ITS PROPERTIES

In this current paper, we are using the concept of extension of the beta function to define an extended k-generalized Mittag-Leffler function (GMLf) (Formula presented). There are four sections included in this paper containing some properties of the above-described function, like derivatives, integral representation, and integral transform. The establishment of some recurrence relations has also been done. We also derive the extended k-GMLf from the extended k-Riemann-Liouville (R-L) fractional derivative of generalized MLf. Numerous former results studied by many researchers can also be derived as special cases of our results. © 2025 Elsevier B.V., All rights reserved.

Авторы
JAIN SHILPI 1 , Jaimini B.B. 2 , Buri Meenu 3 , Agarwal Praveen 4, 5, 6
Издательство
American Institute of Mathematical Sciences
Номер выпуска
4
Язык
Английский
Страницы
472-479
Статус
Опубликовано
Том
8
Год
2025
Организации
  • 1 Department of Mathematics, Poornima College of Engineering, Jaipur, India
  • 2 Department of Mathematics, Government College Kota, Kota, India
  • 3 Department of Mathematics, Government Polytechnic College, Jhunjhunu, India
  • 4 Department of Mathematics, Anand International College of Engineering, Jaipur, India
  • 5 RUDN University, Moscow, Russian Federation
  • 6 Ajman University, Ajman, United Arab Emirates
Ключевые слова
Extended k-Beta function; extended k-Gamma function; k-fractional derivative; k-Pochhammmer symbol; k-Wright function
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.