Multisensor Remote Sensing and AI-Driven Analysis for Coastal and Urban Resilience Classification

Urban resilience is essential for cities to endure and adjust to environmental and socioeconomic upheavals. The static indicators and rule-based spatial frameworks that are the mainstays of traditional resilience assessment models frequently fall short of capturing the dynamic character of coastal and urban resilience. This article suggests a deep learning-based categorization framework for identifying resilience levels in urban and coastal settings by combining long short-term memory (LSTM) networks with multisensor remote sensing data. The Copernicus Marine Data Service's spatiotemporal ocean physics data, namely the eastward (uo) and northward (vo) seawater velocity, are used in the model to increase the precision of resilience evaluations. The methodology includes a multistep deep learning pipeline, incorporating data preprocessing, feature extraction, class balancing with SMOTE, and LSTM-based classification. The proposed LSTM model is optimized to enhance performance with dropout regularization (0.3), an Adam optimizer (learning rate = 0.0003), and class weighting strategies. The model is evaluated using accuracy, F1-score, confusion matrices, and loss curves, ensuring reliable classification across different resilience categories. Results indicate that the framework achieves high classification accuracy (91.5%), demonstrating superior performance compared to traditional machine learning approaches. Regarding multisensor fusion and deep learning, this study provides a scalable, adaptive, and data-driven solution for resilience classification, supporting climate adaptation strategies, disaster risk management, and sustainable urban development. The proposed methodology offers a robust tool for policymakers and urban planners, enabling more effective resilience monitoring and decision-making in rapidly evolving urban and coastal environments. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ren Sumei 1 , Ghaffar Bushra 2 , Mubbin Muhammad 3 , Haseeb Muhammad 4 , Tahir Zainab 4 , Hassan Sher Shah 5 , Kucher Dmitry Evgenievich 6 , Kucher Olga D. 6 , Abdullah-Al-Wadud M. 7
Издательство
Institute of Electrical and Electronics Engineers Inc.
Язык
Английский
Страницы
9166-9180
Статус
Опубликовано
Том
18
Год
2025
Организации
  • 1 Department of Fine Arts and Design, Leshan Teachers College, Leshan, China
  • 2 Department of Environmental Sciences, International Islamic University, Islamabad, Islamabad, Pakistan
  • 3 School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
  • 4 Department of Space Science, University of the Punjab, Lahore, Pakistan
  • 5 Global Change Impact Studies Centre, Islamabad, Pakistan
  • 6 Department of Management, RUDN University, Moscow, Russian Federation
  • 7 Department of Software Engineering, King Saud University, Riyadh, Saudi Arabia
Ключевые слова
Coastal resilience; disaster preparedness; GIS; long short-term memory (LSTM); machine learning (ML); multisensor data fusion; remote sensing; resilient city; sustainable urban development
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.