Development of a method for differential diagnosis of iron deficiency anemia and anemia of chronic disease based on demographic data and routine laboratory tests using machine learning technologies; Разработка метода дифференциальной диагностики железодефицитной анемии и анемии хронических болезней на основе демографических данных и результатов рутинных лабораторных исследований с использованием технологий машинного обучения

Background. The study of machine learning methods, a branch of artificial intelligence science, is relevant for the development of optimal screening strategies, identification of risk groups, and application of less expensive and more accessible laboratory tests to assess the body iron status. Aim. To select an appropriate artificial intelligence algorithm for predicting serum ferritin (SF) levels and to evaluate its applicability for differential diagnosis of iron deficiency anemia and anemia of chronic diseases. Materials and methods. A dataset of 9771 patients with micro-normocytic anemia was used to create the model. On the basis of demographic data (gender and age), clinical blood count, C-reactive protein level and known SF level, a regression model was developed to calculate the expected SF concentration in a particular patient and, using the same parameters, a classification model to determine the SF level group to which the patient belongs: I – <15 μg/L; II – 15–100 μg/L; III – 100–300 μg/L; Iv – ≥300 μg/L. Results. As a result, the regression model has moderate predictive ability (R2 = 0.70; median absolute error was 10.7 μg/L), the correlation coefficient between known and predicted SF level was r = 0.854 (p <0.05). The obtained classification model has high diagnostic accuracy for different clinical groups according to the SF level (AuC ROC was 0.91; 0.79; 0.84; 0.90 and 0.96; 0.76; 0.71; 0.82 for patients with reduced hemoglobin levels in women (<120 g/L) and men (<130 g/L) in groups I, II, III, Iv, respectively). Conclusion. prediction of SF level using the developed models can be used as an accurate and clinically relevant tool for differential diagnosis of iron deficiency anemia (predicted SF is decreased (<100 μg/L), C-reactive protein is normal) and anemia of chronic diseases (predicted SF is normal or increased (>100 μg/L), C-reactive protein is increased) in real medical practice. © 2025 Elsevier B.V., All rights reserved.

Авторы
Varekha Nikolay Vyacheslavovich 1 , Stuklov Nikolai I. 1 , Gordienko K.V. 2 , Gimadiev Rinat R. 1, 2, 3 , Shchegolev O.B. 3 , Kislaya Svetlana 1 , Gubina E.V. 3 , Gurkina A.A. 1
Издательство
ООО "Издательский дом "АБВ-пресс"
Номер выпуска
1
Язык
Русский
Страницы
171-181
Статус
Опубликовано
Том
20
Год
2025
Организации
  • 1 RUDN University, Moscow, Russian Federation
  • 2 Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russian Federation
  • 3 LabHub LLC, Moscow, Russian Federation
Ключевые слова
anemia of chronic diseases; artificial intelligence; C-reactive protein; ferritin; iron deficiency; iron-deficiency anemia; machine learning
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.